Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.186
Filtrar
1.
Protein Sci ; 33(5): e4978, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591637

RESUMO

The Ebola virus (EBOV) is a lipid-enveloped virus with a negative sense RNA genome that can cause severe and often fatal viral hemorrhagic fever. The assembly and budding of EBOV is regulated by the matrix protein, VP40, which is a peripheral protein that associates with anionic lipids at the inner leaflet of the plasma membrane. VP40 is sufficient to form virus-like particles (VLPs) from cells, which are nearly indistinguishable from authentic virions. Due to the restrictions of studying EBOV in BSL-4 facilities, VP40 has served as a surrogate in cellular studies to examine the EBOV assembly and budding process from the host cell plasma membrane. VP40 is a dimer where inhibition of dimer formation halts budding and formation of new VLPs as well as VP40 localization to the plasma membrane inner leaflet. To better understand VP40 dimer stability and critical amino acids to VP40 dimer formation, we integrated computational approaches with experimental validation. Site saturation/alanine scanning calculation, combined with molecular mechanics-based generalized Born with Poisson-Boltzmann surface area (MM-GB/PBSA) method and molecular dynamics simulations were used to predict the energetic contribution of amino acids to VP40 dimer stability and the hydrogen bonding network across the dimer interface. These studies revealed several previously unknown interactions and critical residues predicted to impact VP40 dimer formation. In vitro and cellular studies were then pursued for a subset of VP40 mutations demonstrating reduction in dimer formation (in vitro) or plasma membrane localization (in cells). Together, the computational and experimental approaches revealed critical residues for VP40 dimer stability in an alpha-helical interface (between residues 106-117) as well as in a loop region (between residues 52-61) below this alpha-helical region. This study sheds light on the structural origins of VP40 dimer formation and may inform the design of a small molecule that can disrupt VP40 dimer stability.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Aminoácidos/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
2.
Infect Genet Evol ; 120: 105586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508363

RESUMO

EBV latent membrane protein 1 (LMP-1) is an important oncogene involved in the induction and maintenance of EBV infection and the activation of several cell survival and proliferative pathways. The genetic diversity of LMP-1 has an important role in immunogenicity and tumorigenicity allowing escape from host cell immunity and more metastatic potential of LMP-1 variants. This study explored the evolutionary of LMP-1 in EBV-infected patients at an advanced stage of nasopharyngeal carcinoma (NPC). Detection of genetic variability in LMP-1 genes was carried out using Sanger sequencing. Bioinformatic analysis was conducted for translation and nucleotide alignment. Phylogenetic analysis was used to construct a Bayesian tree for a deeper understanding of the genetic relationships, evolutionary connections, and variations between sequences. Genetic characterization of LMP-1 in NPC patients revealed the detection of polymorphism in LMP-1 Sequences. Motifs were identified within three critical LMP-1 domains, such as PQQAT within CTAR1 and YYD within CTAR2. The presence of the JACK3 region at specific sites within CTAR3, as well as repeat regions at positions (122-132) and (133-143) within CTAR3, was also annotated. Additionally, several mutations were detected including 30 and 69 bp deletions, 33 bp repeats, and 15 bp insertion. Although LMP-1 strains appear to be genetically diverse, they are closely related to 3 reference strains: prototype B95.8, Med- 30 bp deletion, and Med + 30 bp deletion. In our study, one of the strains harboring the 30 bp deletion had both bone and bone marrow metastasis which could be attributed to the fact that LMP-1 is involved in tumor metastasis, evasion and migration of NPC cells. This study provided valuable insights into genetic variability in LMP-1 sequences of EBV in NPC patients. Further functional studies would provide a more comprehensive understanding of the molecular characteristics, epidemiology, and clinical implications of LMP-1 polymorphisms in EBV-related malignancies.


Assuntos
Biologia Computacional , Infecções por Vírus Epstein-Barr , Variação Genética , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Filogenia , Proteínas da Matriz Viral , Proteínas da Matriz Viral/genética , Humanos , Carcinoma Nasofaríngeo/virologia , Carcinoma Nasofaríngeo/genética , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Biologia Computacional/métodos , Evolução Molecular , Teorema de Bayes , Masculino
3.
Eur J Med Chem ; 267: 116172, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38330869

RESUMO

Influenza outbreaks cause pandemics in millions of people. The treatment of influenza remains a challenge due to significant genetic polymorphism in the influenza virus. Also, developing vaccines to protect against seasonal and pandemic influenza infections is constantly impeded. Thus, antibiotics are the only first line of defense against antigenically distinct strains or new subtypes of influenza viruses. Among several anti-influenza targets, the M2 protein of the influenza virus performs several activities. M2 protein is an ion channel that permits proton conductance through the virion envelope and the deacidification of the Golgi apparatus. Both these functions are critical for viral replication. Thus, targeting the M2 protein of the influenza virus is an essential target. Rimantadine and amantadine are two well-known drugs that act on the M2 protein. However, these drugs acquired resistance to influenza and thus are not recommended to treat influenza infections. This review discusses an overview of anti-influenza therapy, M2 ion channel functions, and its working principle. It also discusses the M2 structure and its role, and the change in the structure leads to mutant variants of influenza A virus. We also shed light on the recently identified compounds acting against wild-type and mutated M2 proteins of influenza virus A. These scaffolds could be an alternative to M2 inhibitors and be developed as antibiotics for treating influenza infections.


Assuntos
Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Humanos , Vírus da Influenza A/genética , Antivirais/química , Influenza Humana/tratamento farmacológico , Amantadina/metabolismo , Amantadina/farmacologia , Amantadina/uso terapêutico , Canais Iônicos/metabolismo , Canais Iônicos/uso terapêutico , Antibacterianos/uso terapêutico , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 219-224, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387925

RESUMO

OBJECTIVE: To investigate possible mechanism on protien LMP1 expressed by EBV inducing plasmablast differentiation of DLBCL cell via the mTORC1 pathway. METHODS: The expression levels of LMP1 protein, CD38 and the phosphorylation levels of p70S6K in EBV+ and EBV- DLBCL cell lines were detected by Western blot. Cell lines overexpressing LMP1 gene stablely were constructed and LMP1 gene was silenced by RNAi. The expression of LMP1 gene was verified by RT-qPCR. The expression levels of LMP1 and CD38 and the phosphorylation levels of p70S6K in each group were detected by Western blot. RESULTS: Compared with EBV-DLBCL cells, the expression of LMP1 was detected on EBV +DLBCL cells (P =0.0008), EBV +DLBCL cells had higher phosphorylation levels of p70S6K (P =0.0072) and expression levels of CD38(P =0.0091). Compared with vector group, the cells of LMP1OE group had higher expression levels of LMP1 and CD38 (P =0.0353; P <0.0001), meanwhile molecular p70S6K was phosphorylated much more(P =0.0065); expression of LMP1 mRNA was verified(P <0.0001). Compared with si-NC group, expression level of LMP1 protein(P =0.0129) was not detected and phosphorylated p70S6K disappeared of LMP1KO group (P =0.0228); meanwhile, expression of CD38 decreased,although there was no significant difference (P =0.2377). CONCLUSION: LMP1 promotes DLBCL cells plasmablast differentiation via activating mTORC1 signal pathway.


Assuntos
Herpesvirus Humano 4 , Proteínas Quinases S6 Ribossômicas 70-kDa , Humanos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Linhagem Celular , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
5.
Mol Ther ; 32(1): 168-184, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37974400

RESUMO

Circular mRNA (cmRNA) is particular useful due to its high resistance to degradation by exonucleases, resulting in greater stability and protein expression compared to linear mRNA. T cell receptor (TCR)-engineered T cells (TCR-T) represent a promising means of treating viral infections and cancer. This study aimed to evaluate the feasibility and efficacy of cmRNA in antigen-specific-TCR discovery and TCR-T therapy. Using human cytomegalovirus (CMV) pp65 antigen as a model, we found that the expansion of pp65-responsive T cells was induced more effectively by monocyte-derived dendritic cells transfected with pp65-encoding cmRNA compared with linear mRNA. Subsequently, we developed cmRNA-transduced pp65-TCR-T (cm-pp65-TCR-T) that specifically targets the CMV-pp65 epitope. Our results showed that pp65-TCR could be expressed on primary T cells for more than 7 days. Moreover, both in vitro killing and in vivo CDX models demonstrated that cm-pp65-TCR-T cells specifically and persistently kill pp65-and HLA-expressing tumor cells, significantly prolonging the survival of mice. Collectively, our results demonstrated that cmRNA can be used as a more effective technical approach for antigen-specific TCR isolation and identification, and cm-pp65-TCR-T may provide a safe, non-viral, non-integrated therapeutic approach for controlling CMV infection, particularly in patients who have undergone allogeneic hematopoietic stem cell transplantation.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/terapia , Citomegalovirus/genética , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Proteínas da Matriz Viral/genética
6.
Cell Mol Life Sci ; 80(12): 353, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940699

RESUMO

The coronavirus' (CoV) membrane (M) protein is the driving force during assembly, but this process remains poorly characterized. Previously, we described two motifs in the C-tail of the Middle East respiratory syndrome CoV (MERS-CoV) M protein involved in its endoplasmic reticulum (ER) exit (211DxE213) and trans-Golgi network (TGN) retention (199KxGxYR204). Here, their function in virus assembly was investigated by two different virus-like particle (VLP) assays and by mutating both motifs in an infectious MERS-CoV cDNA clone. It was shown that the 199KxGxYR204 motif was essential for VLP and infectious virus assembly. Moreover, the mislocalization of the M protein induced by mutation of this motif prevented M-E interaction. Hampering the ER export of M by mutating its 211DxE213 motif still allowed the formation of nucleocapsid-empty VLPs, but prevented the formation of fully assembled VLPs and infectious particles. Taken together, these data show that the MERS-CoV assembly process highly depends on the correct intracellular trafficking of its M protein, and hence that not only specific protein-protein interacting motifs but also correct subcellular localization of the M protein in infected cells is essential for virus formation and should be taken into consideration when studying the assembly process.


Assuntos
Proteínas de Membrana , Coronavírus da Síndrome Respiratória do Oriente Médio , Proteínas de Membrana/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Montagem de Vírus/genética
7.
J Biol Chem ; 299(11): 105323, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805138

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of infantile bronchiolitis in the developed world and of childhood deaths in resource-poor settings. The elderly and the immunosuppressed are also affected. It is a major unmet target for vaccines and antiviral drugs. RSV assembles and buds from the host cell plasma membrane by forming infectious viral particles which are mostly filamentous. A key interaction during RSV assembly is the interaction of the matrix (M) protein with cell plasma membrane lipids forming a layer at assembly sites. Although the structure of RSV M protein dimer is known, it is unclear how the viral M proteins interact with cell membrane lipids, and with which one, to promote viral assembly. Here, we demonstrate that M proteins are able to cluster at the plasma membrane by selectively binding with phosphatidylserine (PS). Our in vitro studies suggest that M binds PS lipid as a dimer and upon M oligomerization, PS clustering is observed. In contrast, the presence of other negatively charged lipids like PI(4, 5)P2 does not enhance M binding beyond control zwitterionic lipids, while cholesterol negatively affects M interaction with membrane lipids. Moreover, we show that the initial binding of the RSV M protein with PS lipids is independent of the cytoplasmic tail of the fusion (F) glycoprotein (FCT). Here, we highlight that M binding on membranes occurs directly through PS lipids, this interaction is electrostatic in nature, and M oligomerization generates PS clusters.


Assuntos
Vírus Sincicial Respiratório Humano , Humanos , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Virais de Fusão/metabolismo , Vírion/metabolismo , Montagem de Vírus , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Linhagem Celular Tumoral
8.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37800895

RESUMO

Coronaviruses are positive-stranded RNA enveloped viruses. The helical nucleocapsid is surrounded by a lipid bilayer in which are anchored three viral proteins: the spike (S), membrane (M) and envelope (E) proteins. The M protein is the major component of the viral envelope and is believed to be its building block. The M protein of Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a short N-terminal domain with an N-glycosylation site. We investigated their N-glycosylation and show that polylactosamine chains are conjugated to SARS-CoV-2 and MERS-CoV M proteins in transfected and infected cells. Acidic residues present in the first transmembrane segments of the proteins are required for their glycosylation. No specific signal to specify polylactosamine conjugation could be identified and high mannose-conjugated protein was incorporated into virus-like particles.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/metabolismo , Proteínas da Matriz Viral/genética , Proteínas de Membrana , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
J Exp Clin Cancer Res ; 42(1): 261, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37803433

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is the first discovered human tumor virus that is associated with a variety of malignancies of both lymphoid and epithelial origin including nasopharyngeal carcinoma (NPC). The EBV-encoded latent membrane protein 1 (LMP1) has been well-defined as a potent oncogenic protein, which is intimately correlated with NPC pathogenesis. Anoikis is considered to be a physiological barrier to metastasis, and avoiding anoikis is a major hallmark of metastasis. However, the role of LMP1 in anoikis-resistance and metastasis of NPC has not been fully identified. METHODS: Trypan blue staining, colony formation assay, flow cytometry, and TUNEL staining, as well as the detection of apoptosis and anoikis resistance-related markers was applied to evaluate the anoikis-resistant capability of NPC cells cultured in ultra-low adhesion condition. Co-immunoprecipitation (Co-IP) experiment was performed to determine the interaction among LMP1, PRMT1 and PGC-1α. Ex vivo ubiquitination assay was used to detect the ubiquitination level of PGC-1α. Anoikis- resistant LMP1-positive NPC cell lines were established and applied for the xenograft and metastatic animal experiments. RESULTS: Our current findings reveal the role of LMP1-stabilized peroxisome proliferator activated receptor coactivator-1a (PGC-1α) in anoikis resistance and immune escape to support the invasion and metastasis of NPC. Mechanistically, LMP1 enhances PGC-1α protein stability by promoting the interaction between arginine methyltransferase 1 (PRMT1) and PGC-1α to elevate the methylation modification of PGC-1α, thus endowing NPC cells with anoikis-resistance. Meanwhile, PGC-1α mediates the immune escape induced by LMP1 by coactivating with STAT3 to transcriptionally up-regulate PD-L1 expression. CONCLUSION: Our work provides insights into how virus-encoded proteins recruit and interact with host regulatory elements to facilitate the malignant progression of NPC. Therefore, targeting PGC-1α or PRMT1-PGC-1α interaction might be exploited for therapeutic gain for EBV-associated malignancies.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Animais , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Anoikis , Neoplasias Nasofaríngeas/tratamento farmacológico , Proteínas de Membrana/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Linhagem Celular Tumoral , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
10.
J Virol ; 97(10): e0021923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37702487

RESUMO

IMPORTANCE: A growing body of evidence has supported the notion that viruses utilize EVs and associated pathways to incorporate viral products. This allows for the evasion of an immune response while enabling viral spread within the host. Given that viral proteins often elicit strong antigenic peptides that are recognized by T cells, the regulation of the PD-L1 pathway through the overexpression of lEV-associated PD-L1 may serve as a strategy for immune evasion by viruses. The discovery that EBV LMP1 increases the secretion of PD-L1 in larger EVs identifies a new potential target for immune blockade therapy in EBV-associated cancers. Our findings may help to clarify the mechanism of LMP1-mediated enhancement of PD-L1 packaging into lEVs and may lead to the identification of more specific targets for treatment. Additionally, the identification of lEV biomarkers that predict a viral origin of disease could allow for more targeted therapies to be developed.


Assuntos
Infecções por Vírus Epstein-Barr , Vesículas Extracelulares , Proteínas da Matriz Viral , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Herpesvirus Humano 4/fisiologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
11.
Structure ; 31(9): 1038-1051.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37392738

RESUMO

The Ebola virus matrix protein VP40 mediates viral budding and negatively regulates viral RNA synthesis. The mechanisms by which these two functions are exerted and regulated are unknown. Using a high-resolution crystal structure of Sudan ebolavirus (SUDV) VP40, we show here that two cysteines in the flexible C-terminal arm of VP40 form a stabilizing disulfide bridge. Notably, the two cysteines are targets of posttranslational redox modifications and interact directly with the host`s thioredoxin system. Mutation of the cysteines impaired the budding function of VP40 and relaxed its inhibitory role for viral RNA synthesis. In line with these results, the growth of recombinant Ebola viruses carrying cysteine mutations was impaired and the released viral particles were elongated. Our results revealed the exact positions of the cysteines in the C-terminal arm of SUDV VP40. The cysteines and/or their redox status are critically involved in the differential regulation of viral budding and viral RNA synthesis.


Assuntos
Ebolavirus , Proteínas da Matriz Viral , Ebolavirus/genética , Ebolavirus/metabolismo , Mutação , Oxirredução , Sudão , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Humanos
12.
Bioconjug Chem ; 34(8): 1447-1458, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37458383

RESUMO

The influenza A virus causes substantial morbidity and mortality worldwide every year and poses a constant threat of an emergent pandemic. Seasonal influenza vaccination strategies fail to provide complete protection against infection due to antigenic drift and shift. A universal vaccine targeting a conserved influenza epitope could substantially improve current vaccination strategies. The ectodomain of the matrix 2 protein (M2e) of influenza is a highly conserved epitope between virus strains but is also poorly immunogenic. Administration of M2e and the immunostimulatory stimulator of interferon genes (STING) agonist 3'3'-cyclic guanosine-adenosine monophosphate (cGAMP) encapsulated in microparticles made of acetalated dextran (Ace-DEX) has previously been shown to be effective for increasing the immunogenicity of M2e, primarily through T-cell-mediated responses. Here, the immunogenicity of Ace-DEX MPs delivering M2e was further improved by conjugating the M2e peptide to the particle surface in an effort to affect B-cell responses more directly. Conjugated or encapsulated M2e co-administered with Ace-DEX MPs containing cGAMP were used to vaccinate mice, and it was shown that two or three vaccinations could fully protect against a lethal influenza challenge, while only the surface-conjugated antigen constructs could provide some protection against lethal challenge with only one vaccination. Additionally, the use of a reducible linker augmented the T-cell response to the antigen. These results show the utility of conjugating M2e to the surface of a particle carrier to increase its immunogenicity for use as the antigen in a universal influenza vaccine.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Dextranos/química , Epitopos , Camundongos Endogâmicos BALB C , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Anticorpos Antivirais
13.
Int J Cancer ; 153(5): 1043-1050, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318089

RESUMO

In 2017, the World Health Organization (WHO) confirmed a new entity, Epstein Barr virus (EBV) + Diffuse large B cell lymphoma (DLBCL), not otherwise specified (NOS). Traces of EBV transcripts were described in lymphomas, including DLBCL, that were diagnosed as EBV negative by conventional methods. The aim of this study was to detect viral genome by qPCR, as well as LMP1 and EBNA2 transcripts, with a more sensitive method in DLBCL cases from Argentina. Fourteen cases originally considered as EBV negative expressed LMP1 and/or EBNA2 transcripts. In addition, LMP1 and/or EBNA2 transcripts were also observed in bystander cells. However, EBERs+ cells cases by conventional ISH showed higher numbers of cells with LMP1 transcripts and LMP1 protein. In the cases that were EBERS- in tumor cells but with expression of LMP1 and/or EBNA2 transcripts, the viral load was below the limit of detection. This study provides further evidence that EBV could be detected in tumor cells by more sensitive methods. However, higher expression of the most important oncogenic protein, LMP1, as well as increased viral load, are only observed in cases with EBERs+ cells by conventional ISH, suggesting that traces of EBV might not display a key role in DLBCL pathogenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma Difuso de Grandes Células B , Humanos , Adulto , Criança , Herpesvirus Humano 4/genética , Linfoma Difuso de Grandes Células B/patologia , Argentina , Antígenos Nucleares do Vírus Epstein-Barr/genética , Proteínas da Matriz Viral/genética
14.
Proc Natl Acad Sci U S A ; 120(20): e2219755120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155846

RESUMO

Latent Epstein-Barr virus (EBV) infection promotes undifferentiated nasopharyngeal carcinomas (NPCs) in humans, but the mechanism(s) for this effect has been difficult to study because EBV cannot transform normal epithelial cells in vitro and the EBV genome is often lost when NPC cells are grown in culture. Here we show that the latent EBV protein, LMP1 (Latent membrane protein 1), induces cellular proliferation and inhibits spontaneous differentiation of telomerase-immortalized normal oral keratinocytes (NOKs) in growth factor-deficient conditions by increasing the activity of the Hippo pathway effectors, YAP (Yes-associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif). We demonstrate that LMP1 enhances YAP and TAZ activity in NOKs both by decreasing Hippo pathway-mediated serine phosphorylation of YAP and TAZ and increasing Src kinase-mediated Y357 phosphorylation of YAP. Furthermore, knockdown of YAP and TAZ is sufficient to reduce proliferation and promote differentiation in EBV-infected NOKs. We find that YAP and TAZ are also required for LMP1-induced epithelial-to-mesenchymal transition. Importantly, we demonstrate that ibrutinib (an FDA-approved BTK inhibitor that blocks YAP and TAZ activity through an off-target effect) restores spontaneous differentiation and inhibits proliferation of EBV-infected NOKs at clinically relevant doses. These results suggest that LMP1-induced YAP and TAZ activity contributes to the development of NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Diferenciação Celular , Proliferação de Células , Células Epiteliais/metabolismo , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/genética , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas de Sinalização YAP
15.
J Med Virol ; 95(4): e28721, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185862

RESUMO

The ectodomain of influenza matrix protein 2 (M2e) is a promising target for the development of universal prophylactic and therapeutic agents against influenza viruses of different subtypes. We constructed three M2e-specific monoclonal antibody variants, M2A1-1 (IgG1), M2A1-2a (IgG2a), M2A1-2b (IgG2b), which have the same Fab region targeting the M2e epitope but different isotypes, and compared their protective efficacy in influenza PR8-infected mice. We found that anti-M2e antibodies provided protection against influenza virus in a subtype-dependent manner, with the IgG2a variant providing significantly better protection with lower virus titers and milder lung injury than IgG1 and IgG2b isotypes. Additionally, we observed that the protective efficacy was dependent on the administration routes, with intranasal administration of antibody providing better protection than intraperitoneal administration. The timing of administration was also critical in determining the protective efficacy; while all the antibody isotypes provided protection when administered before influenza challenge, only IgG2a provided minimal protection when the antibodies were administered after virus challenge. These results provide valuable information for optimizing the therapeutics usage of M2e-based antibodies and furthering the development of M2e-based universal influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Camundongos , Humanos , Anticorpos Antivirais , Imunoglobulina G , Proteínas da Matriz Viral/genética , Camundongos Endogâmicos BALB C
16.
Virus Genes ; 59(4): 541-553, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243920

RESUMO

The critical Epstein‒Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) and BamHI fragment H rightward open reading frame 1 (BHRF-1) genes affect EBV-mediated malignant transformation and virus replication during EBV infection. Therefore, these two genes are considered ideal targets for EBV vaccine development. However, gene mutations in LMP-1 and BHRF-1 in different cohorts may affect the biological functions of EBV, which would seriously hinder development of personalized vaccines for EBV. In the present study, by performing nested polymerase chain reaction (nested PCR) and DNA sequence techniques, we analyzed the nucleotide variability and phylogeny of LMP-1 containing a 30 bp deletion region (del-LMP-1) and BHRF-1 in EBV-infected patients (N = 382) and healthy persons receiving physical examination (N = 98; defined as the control group) in Yunnan Province, China. Three BHRF-1 subtypes were identified in this study: 79V88V, 79L88L, and 79V88L, with mutation frequencies of 58.59%, 24.24%, and 17.17%, respectively. Compared with the control group, the distribution of BHRF-1 subtypes of the three groups showed no significant difference, suggesting that BHRF-1 is highly conserved in EBV-related samples. In addition, a short fragment of del-LMP-1 was found in 133 cases, and the nucleotide variation rate was 87.50% (133/152). For del-LMP-1, a significant distribution in three groups was detected, as characterized by a high mutation rate. In conclusion, our study illustrates gene variability and mutations of EBV-encoded del-LMP-1 and BHRF-1 in clinical samples. Highly mutated LMP-1 might be associated with various types of EBV-related diseases, indicating that BHRF-1 combined with LMP-1 may be used as an ideal target for development of EBV personalized vaccines.


Assuntos
Infecções por Vírus Epstein-Barr , Vacinas , Humanos , China , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Mutação , Nucleotídeos , Proteínas da Matriz Viral/genética , Proteínas Virais/genética
17.
Pathol Res Pract ; 245: 154484, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37116366

RESUMO

BACKGROUND: The contribution of viral infection in tumors pathogenesis has currently attracted attention. Epstein-Barr virus is an infectious agent involved in numerous human malignancies, including breast cancer. Although, their prognostic impact in breast tumor is rarely investigated. Therefore, we sought in our study to evaluate the prevalence of EBV in Tunisian breast carcinoma and to examine their potential association with clinicopathological features and overall survival. METHODS: Our retrospective study included 100 formalin fixed paraffin embedded samples from Tunisian breast carcinoma. EBV infection was evaluated by immunohistochemical analysis, using monoclonal antibody against latent membrane protein 1 (LMP-1) and polymerase chain reaction. A subset of PCR positive specimens was subjected to in situ hybridization for the detection of EBER expression. Biomarker's expression was evaluated by immunohistochemistry method. Statistical analysis was also explored. RESULTS: The expression status of ER, PR and HER2 was 81%, 71.4% and 33.7% respectively. The triple negative profile was present in 10.84% of cases. LMP-1 expression was negative in all breast cancer specimens. PCR assay showed that 44% of patients were positive for EBV genome. None of the 15 PCR positive cases showed positive results for EBV by ISH. According to the molecular phenotype, there was a statistically significant difference in EBV DNA prevalence between breast cancer subgroups including TN (67%), Lum B (64%), HER2 + (50%) and Lum A (30%). Bivariate analysis showed that EBV DNA was significantly associated with HER2 + (p = 0.035), tumor size (p = 0.018) and high SBR grade (p = 0.009). Multiple logistic regression analysis confirms the positive correlation of EBV with tumor size (p = 0.048) and SBR grade (p = 0.042). Kaplan-Meier analysis showed that patients with EBV+ had significantly shorter overall survival than those with EBV- (p = 0.032). CONCLUSIONS: Our study demonstrated the presence of EBV DNA in Tunisian breast carcinoma. EBV DNA was associated with aggressive features and poor overall survival. Further investigations will be required in large samples size to clarify the potential role of EBV in breast tumor progression.


Assuntos
Neoplasias da Mama , Infecções por Vírus Epstein-Barr , Humanos , Feminino , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/diagnóstico , Estudos Retrospectivos , Neoplasias da Mama/patologia , DNA , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
18.
Virology ; 581: 128-138, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958217

RESUMO

Epstein-Barr virus (EBV) is a human herpesvirus that is associated with a multitude of cancers. The primary EBV oncogene latent membrane protein 1 (LMP1) is secreted from infected cancer cells in small extracellular vesicles (EVs). Additionally, the tetraspanin protein CD63 forms a complex with LMP1 and CD63 can be trafficked to EVs through a ceramide-dependent manner. Therefore, we hypothesize that ceramide is required for efficient packaging of LMP1 into small EVs. Following treatment with the neutral sphingomyelinase inhibitor GW4869, LMP1 cellular localization was disrupted and immunoblotting of EV lysates revealed a significant reduction in extracellular LMP1. NTA of EVs from the LCLs treated with GW4869 demonstrated a significant decrease in particle secretion. Additionally, ceramide inhibition resulted in enhanced LMP1-mediated NFkB activation in EV producing cells. Taken together, these data reveal a critical role for the lipid ceramide in LMP1 exosomal trafficking and the oncogenic signaling properties of the viral protein.


Assuntos
Infecções por Vírus Epstein-Barr , Vesículas Extracelulares , Humanos , Compostos de Anilina , Vesículas Extracelulares/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Ceramidas/metabolismo , Transporte Biológico
19.
Oncol Rep ; 49(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734290

RESUMO

Latent membrane protein 1 (LMP1), which is encoded by the Epstein­Barr virus (EBV), has been considered as an oncogene, although the detailed mechanism behind its function remains unclear. It has been previously reported that LMP1 promotes tumorigenesis by upregulation of peroxisome proliferator­activated receptor­Î³ coactivator­1ß (PGC1ß). The present study aimed to investigate the potential mechanism for transient EBV/LMP1 exposure­mediated persistent PGC1ß expression and subsequent tumorigenesis through modification of mitochondrial function. Luciferase reporter assay, chromatin immunoprecipitation and DNA mutation techniques were used to evaluate the PGC1ß­mediated expression of dynamin­related protein 1 (DRP1). Tumorigenesis was evaluated by gene expression, oxidative stress, mitochondrial function and in vitro cellular proliferation assays. The potential effects of EBV, LMP1 and PGC1ß on tumor growth were evaluated in an in vivo xenograft mouse model. The present in vitro experiments showed that LMP1 knockdown did not affect PGC1ß expression or subsequent cell proliferation in EBV­positive tumor cells. PGC1ß regulated DRP1 expression by coactivation of GA­binding protein α and nuclear respiratory factor 1 located on the DRP1 promoter, subsequently modulating mitochondrial fission. Transient exposure of either EBV or LMP1 in human hematopoietic stem cells caused persistent epigenetic changes and PGC1ß upregulation after long­term cell culture even in the absence of EBV/LMP1, which decreased oxidative stress, and potentiated mitochondrial function and cell proliferation in vitro. Enhanced tumor growth and shortened survival were subsequently observed in vivo. It was concluded that PGC1ß expression and subsequent cell proliferation were independent from LMP1 in EBV­positive tumor cells. PGC1ß modulated mitochondria fission by regulation of DRP1 expression. Transient EBV/LMP1 exposure caused persistent PGC1ß expression, triggering tumor growth in the absence of LMP1. The present study proposes a novel mechanism for transient EBV/LMP1 exposure­mediated tumorigenesis through persistent epigenetic changes and PGC1ß upregulation, uncovering the reason why numerous forms of lymphoma exhibit upregulated PGC1ß expression, but are devoid of EBV/LMP1.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas da Matriz Viral , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinogênese/metabolismo , Transformação Celular Neoplásica/genética , Epigênese Genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Regulação para Cima , Proteínas da Matriz Viral/genética
20.
Virus Genes ; 59(2): 204-214, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738378

RESUMO

This study aimed to investigate the association of Epstein-Barr virus (EBV) with nuclear respiratory factor 1 (NRF1) and the biological function of NRF1 in EBV-associated gastric cancer (EBVaGC). Western blot and qRT-PCR were used to assess the effect of latent membrane protein 2A (LMP2A) on NRF1 expression after transfection with LMP2A plasmid or siLMP2A. The effects of NRF1 on the migration and apoptosis ability of GC cells were investigated by transwell assay and flow cytometry apoptosis analysis in vitro, respectively. In addition, we determined the regulatory role of NRF1 in EBV latent infection by western blot and droplet digital PCR (ddPCR). LMP2A upregulated NRF1 expression by activating the NF-κB pathway. Moreover, NRF1 upregulated the expression of N-Cadherin and ZEB1 to promote cell migration. NRF1 promoted the expression of Bcl-2 to increase the anti-apoptotic ability of cells. In addition, NRF1 maintained latent infection of EBV by promoting the expression of the latent protein Epstein-Barr nuclear antigen 1 (EBNA1) and inhibiting the expression of the lytic proteins. Our data indicated the role of NRF1 in EBVaGC progression and the maintenance of EBV latent infection. This provided a new theoretical basis for further NRF1-based anti-cancer therapy.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Fator 1 Nuclear Respiratório/metabolismo , NF-kappa B/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...